Search results for "Neuronal circuits"

showing 3 items of 3 documents

Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites

2003

Insect neurons are individually identifiable and have been used successfully to study principles of the formation and function of neuronal circuits. In the fruitfly Drosophila, studies on identifiable neurons can be combined with efficient genetic approaches. However, to capitalise on this potential for studies of circuit formation in the CNS of Drosophila embryos or larvae, we need to identify pre- and postsynaptic elements of such circuits and describe the neuropilar territories they occupy. Here, we present a strategy for neurite mapping, using a set of evenly distributed landmarks labelled by commercially available anti-Fasciclin2 antibodies which remain comparatively constant between s…

Central Nervous SystemEmbryo NonmammalianNeuropilTime FactorsNeuritePeriod (gene)CD8 AntigensModels BiologicalSynapseNeurons EfferentPostsynaptic potentialNeuritesAnimalsDrosophila ProteinsDrosophilaMolecular BiologybiologyfungiNeurogenesisGene Expression Regulation DevelopmentalAnatomyCell Biologybiology.organism_classificationNeuronal circuitsLarvaGene TargetingDrosophilaNeuroscienceDevelopmental BiologyDevelopmental Biology
researchProduct

Rhythmic Memory Consolidation in the Hippocampus

2022

Functions of the brain and body are oscillatory in nature and organized according to a logarithmic scale. Brain oscillations and bodily functions such as respiration and heartbeat appear nested within each other and coupled together either based on phase or based on phase and amplitude. This facilitates communication in wide-spread neuronal networks and probably also between the body and the brain. It is a widely accepted view, that nested electrophysiological brain oscillations involving the neocortex, thalamus, and the hippocampus form the basis of memory consolidation. This applies especially to declarative memories, that is, memories of life events, for example. Here, we present our vie…

värähtelytbrain oscillationshengityselektrofysiologiahermoverkot (biologia)hippokampussleepelectrophysiologyneuronal circuitsrespirationuni (lepotila)muisti (kognitio)
researchProduct

PSA Depletion Induces the Differentiation of Immature Neurons in the Piriform Cortex of Adult Mice

2021

Immature neurons are maintained in cortical regions of the adult mammalian brain. In rodents, many of these immature neurons can be identified in the piriform cortex based on their high expression of early neuronal markers, such as doublecortin (DCX) and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). This molecule plays critical roles in different neurodevelopmental events. Taking advantage of a DCX-CreERT2/Flox-EGFP reporter mice, we investigated the impact of targeted PSA enzymatic depletion in the piriform cortex on the fate of immature neurons. We report here that the removal of PSA accelerated the final development of immature neurons. This was revealed by a h…

Olfactory systemMaleDendritic spineDoublecortin ProteinGlycoside HydrolasesQH301-705.5PSA-NCAMneuronal precursorsNeural Cell Adhesion Molecule L1Piriform CortexSynaptic TransmissionCatalysisArticleImmunophenotypingInorganic ChemistryMiceneuronal maturationGenes ReporterdoublecortinPiriform cortexAnimalsPhysical and Theoretical ChemistryBiology (General)olfactory cortexMolecular BiologyQD1-999SpectroscopyNeuronsbiologyOrganic ChemistryCell DifferentiationGeneral MedicineAxon initial segmentComputer Science ApplicationsCell biologyDoublecortinChemistryNeuronal circuitsnervous systembiology.proteinSialic AcidsNeural cell adhesion moleculeNeuNBiomarkersInternational Journal of Molecular Sciences
researchProduct